Selasa, 17 September 2013

Sistem bilangan di dalam dunia komputer

Sistem bilangan di dalam dunia komputer

Sistem Bilangan atau Number System adalah Suatu cara untuk mewakili besaran dari suatu item fisik. Sistem Bilangan menggunakan suatu bilangan dasar atau basis (base / radix) yang tertentu. Dalam hubungannya dengan komputer.


1. Desimal (Basis 10)

Desimal (Basis 10) adalah Sistem Bilangan yang paling umum digunakan dalam kehidupan sehari-hari. Sistem bilangan desimal menggunakan basis 10 dan menggunakan 10 macam simbol bilangan yaitu : 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9. Sistem bilangan desimal dapat berupa integer desimal (decimal integer) dan dapat juga berupa pecahan desimal (decimal fraction).

Untuk melihat nilai bilangan desimal dapat digunakan perhitungan seperti berikut, misalkan contoh bilangan desimal adalah 8598. Ini dapat diartikan :
Dalam gambar diatas disebutkan Absolut Value dan Position Value. Setiap simbol dalam sistem bilangan desimal memiliki Absolut Value dan Position Value. Absolut value adalah Nilai Mutlak dari masing-masing digit bilangan. Sedangkan Position Value adalah Nilai Penimbang atau bobot dari masing-masing digit bilangan tergantung dari letak posisinya yaitu bernilai basis di pangkatkan dengan urutan posisinya. Untuk lebih jelasnya perhatikan tabel dibawah ini.

Dengan begitu maka bilangan desimal 8598 bisa diartikan sebagai berikut :

Sistem bilangan desimal juga bisa berupa pecahan desimal (decimal fraction), misalnya : 183,75 yang dapat diartikan :

2. Biner (Basis 2)

Biner (Basis 2) adalah Sistem Bilangan yang terdiri dari 2 simbol yaitu 0 dan 1. Bilangan Biner ini di populerkan oleh John Von Neumann. Contoh Bilangan Biner 1001, Ini dapat di artikan (Di konversi ke sistem bilangan desimal) menjadi sebagai berikut :

Position Value dalam sistem Bilangan Biner merupakan perpangkatan dari nilai 2 (basis), seperti pada tabel berikut ini :

Berarti, Bilangan Biner 1001 perhitungannya adalah sebagai berikut :


3. Oktal (Basis 8)


Oktal (Basis 8) adalah Sistem Bilangan yang terdiri dari 8 Simbol yaitu 0, 1, 2, 3, 4, 5, 6, 7.Contoh Oktal 1024, Ini dapat di artikan (Di konversikan ke sistem bilangan desimal) menjadi sebagai berikut :
Position Value dalam Sistem Bilangan Oktal merupakan perpangkatan dari nilai 8 (basis), seperti pada tabel berikut ini :


Berarti, Bilangan Oktal 1022 perhitungannya adalah sebagai berikut :

4. Hexadesimal (Basis 16)

Hexadesimal (Basis 16), Hexa berarti 6 dan Desimal berarti 10 adalah Sistem Bilangan yang terdiri dari 16 simbol yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15). Pada Sistem Bilangan Hexadesimal memadukan 2 unsur yaitu angka dan huruf. Huruf Amewakili angka 10B mewakili angka 11 dan seterusnya sampai Huruf F mewakili angka 15

Contoh Hexadesimal F3D4, Ini dapat di artikan (Di konversikan ke sistem bilangan desimal) menjadi sebagai berikut :


Position Value dalam Sistem Bilangan Hexadesimal merupakan perpangkatan dari nilai 16 (basis), seperti pada tabel berikut ini :


Berarti, Bilangan Hexadesimal F3DA perhitungannya adalah sebagai berikut :

5. Bilangan Hexa

Bilangan Hexa adalah sistim bilangan yang berbasis 16, artinya sistim bilangan hexa mengenal angka 0 sampai dengan 15. Hal ini berbeda dengan bilangan desimal yang merupakan bilangan berbasis 10 dan menggunakan angka 0 sampai 9 untuk menandai nilai bilangan hexa dimulai dari 0 sampai 9 dan dilanjutkan A sampai F untuk menyatakan nilai bilangan 10 sampai 15 bilangan desimal berikutnya.
Sebagai contoh pembanding cara penulisan antara bilangan Desimal, Hexa dan Biner, kita perhatikan tabel berikut di bawah ini
DesimalHexaBiner
000000
110001
220010
330011
440100
550101
660110
770111
881000
991001
10A1010
11B1011
12C1100
13D1101
14E1110
15F1111
Konversi Bilangan Hexa ke Desimal
Untuk mengkonversi bilangan hexa ke desimal dapat dilakukan dengan mudah, yaitu seperti yang kita lakukan pada cara konversi biner ke desimal. Setiap tingkatan harga bilangan oktal 0 sampai dengan F dikalikan dengan pengali dan dijumlahkan, maka akan didapatkan harga desimalnya.
Berikut merupakan contoh konversi bilangan hexa 309 ke desimal ternyata didapatkan hasil 777.
655364096256161Pengali
164163162161160Tingkatan
309Bilangan
3×256+0×16+9×1
768+0+9=777
Konversi Bilangan Desimal ke Hexa
Dalam melaksanakan konversi dari Desimal ke Hexa kita dapat menggunakan daftar konversi berikut sebagai dasar konversi.
DesimalHexa164163162161160
1165 5364 096256161
22131 0728 192512322
33196 60812 288768483
44262 14416 3841 024644
55327 68020 4801 280805
66393 21624 5761 536966
77458 75228 6721 7921127
88524 28832 7682 0481288
99589 82436 8642 3041449
10A655 36040 9602 56016010
11B720 89645 0562 81617611
12C786 43249 1523 07219212
13D851 96853 2483 32820813
14E917 50457 3443 58422414
15F983 04061 4403 84024015
Sebagai contoh kita akan mengkonversi bilangan desimal 1983 ke bilangan hexa,
1983 – 1792sisa 191 (dari daftar 1792 adalah 7 hexa pada tingkat 162)
191 – 176sisa 15 (dari daftar 176 adalah B hexa pada tingkat 161)
15 – 15sisa 0 (dari daftar 15 adalah F hexa pada tingkat 160)
Maka hasil konversinya diperoleh 7 B F hexa.atau dapat ditulis 7BF(16)
Konversi Biner ke Hexa
Cara mengkonversi bilangan biner ke bilangan hexa dapat dilakukan dengan cara mengelompokan bilangan biner menjadi empat-empat digitnya, kemudian kita tuliskan nilai konversinya ke bilangan hexa dari empat digit kelompok bilangan biner tersebut maka kita sudah mendapatkan konversi biner ke hexa.
Perhatikan contoh dibawah ini, kita akan mengkonversi bilangan biner 1001 1011 1100(2) ke bilangan hexa maka didapatkan hasil sebagai berikut :
100110111100Biner (1001 1011 1100)2
9BCHexa (9BC)16
Demikian juga bila kita ingin mengkonversikan bilangan hexa ke bilangan biner, dapat dilakukan dengan cara memisahkan masing-masing bilangan hexa kemudian mengkonversikan bilangan oktal tersebut ke bilangan biner.
F8CHexa (F8C)16
111110001100Biner (1111 1000 1100)2

Tidak ada komentar:

Posting Komentar